Pan American Network on
Drug Regulatory Harmonization

Working Group on Vaccines

Harmonized requirements for the licensing of vaccines in the Americas and Guidelines for preparation of application
CONTENT

CHAPTER 1: HARMONIZED REQUIREMENTS FOR THE LICENSING OF VACCINES IN THE AMERICAS

- **Introduction** .. 3
- **Background** .. 3
- **Objective** .. 4
- **Scope** ... 4
- **Module 1. Administrative - Legal Information** 5
- **Module 2. Summaries** 6
- **Module 3. Quality Information (Chemical, Pharmaceutical and Biological)** 7
- **Module 4. Non Clinical Information** 9
- **Module 5. Clinical Information** 10

CHAPTER 2: GUIDELINES FOR PREPARATION OF APPLICATION

- **Introduction** .. 13
- **Module 1. Administrative - Legal Information** 13
- **Module 2. Summaries** 17
- **Module 3. Quality Information (Chemical, Pharmaceutical and Biological)** 19
- **Module 4. Non Clinical Information** 24
- **Module 5. Clinical Information** 25

Glossary .. 27

Abbreviations .. 29

Literature References ... 31

Acknowledgements .. 33
CHAPTER 1:
HARMONIZED REQUIREMENTS FOR THE LICENSING OF VACCINES IN THE AMERICAS
INTRODUCTION

Responsibility for the quality, safety and efficacy of vaccines lies first and foremost with the manufacturer. The National Regulatory Authorities (NRA) in each country must establish procedures to ensure that products and manufacturers meet the established regulatory criteria.

Vaccines are products of biological origin which exhibit some intrinsic variability. They are characterized by complex manufacturing processes and are administered to large numbers of healthy children, adolescents and adults. Their quality can not be assessed solely by testing the final product alone. It is recommended that the NRAs establish a specific regulatory system for this type of product.

A basic function of NRAs is to evaluate the quality, efficacy and safety of vaccines. This involves authorizing their use, distribution and sale, which implies granting a license and a market authorization.

In order to license a vaccine, the NRAs must first set requirements for applicants to comply with. These requirements include the information needed in the application file, and evidence that the vaccine has passed the stages of research, development, production and quality control, as well as clinical testing, and guarantees that the quality, safety and efficacy required of the vaccine to be used in humans has been established.

Another important aspect to consider in the vaccine evaluation process is that the manufacturing facilities must comply with good manufacturing practices (GMP). The NRA must have a legal authority and regulatory basis so that it can carry out its functions independently, transparently and with authority; therefore, its staff must be trained and have the experience needed to do the evaluation.

BACKGROUND

At the Fourth Conference of the Pan-American Pharmaceutical Regulation Harmonization Network (PANDRH) held in March 2005 in the Dominican Republic, the establishment of a Vaccines Working Group (Vaccines WG) was proposed in response to a need to develop harmonized documents in this field. This group was established in June 2005 in Panamá. At its first meeting, the mission, objectives and work plan were determined. As a priority, the Group proposed developing harmonized vaccine registration requirements for the Region, using as a base the requirements developed for medicines by the Registration Working Group of the PANDRH Network, the document prepared in 1999 by the Pan-American Health Organization (PAHO) on vaccine licensing requirements, and the requirements of the countries participating in the meeting (Argentina, Brazil, Cuba and Panama).

Using the information compiled at the first meeting, a diagnostic survey was designed and sent to all countries in the region in order to find out the requirements applied in each one. This information was processed by the PAHO secretariat in Washington DC, USA.

At the second meeting of the Vaccines Working Group held in December 2005 in Caracas, Venezuela, all the information sent by 16 countries in the Region in response to the diagnostic survey, was reviewed. These countries were Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Uruguay and Venezuela.

Consistent with the PANDRH objectives of harmonizing guidelines and considering all the documentation mentioned previously, as well as other documents such as the Common Technical Document (CTD) of the International Conference on Harmonization (ICH) and the Technical Reports Series of the World Health Organization (WHO), the first version of the document on harmonized requirements for the licensing of vaccines in the Region was prepared in April 2006 and sent for review by the Vaccines WG members. The document was discussed at the Group's third meeting held in June 2006 in Ottawa, Canada. In July, August and September 2006, the final version of the application guide for the Proposed Harmonized Requirements for the Licensing of Vaccines in the Americas was prepared, expanding on the requirements previously mentioned.

Later the document was put under revision by the public opinion, with translations to English and the French. In October of the 2008 a meeting was held in Washington DC with the NRAs and the industry to analyze the received commentaries, being the most remarkable request that the same numeration and structure of the CTD of the ICH should be used. The final version was presented for its approval in the V Conference of PANDRH, held in Argentina, in November of the 2008.

This document consists of five modules, following the guidelines established by the CTD of the ICH, adapted specifically to the licensing of vaccines.
During the evaluation process, the recommendations of the WHO for the production and control of the vaccine in question must be considered, as well as GMP and clinical and non-clinical evaluation guides published in the WHO’s Technical Reports Series.

A guide containing additional information for applying the Harmonized Requirements for the Licensing of Vaccines in the Americas has been prepared as an attachment to this document.

OBJECTIVE

The purpose of this document is to establish harmonized requirements for the submission of licensing application of human vaccines. Requiring the same level of information across countries will facilitate the licensing process and ultimately the availability of vaccines. It is expected that having a common document will also benefit the Region by marking more efficient use of technical and financial resources.

SCOPE

Applies to all vaccines to be registered for use in humans, regardless of where they are manufactured, whether they are licensed in the country of origin or not, and considering the current legislation in the country in which registration is sought.
MODULE 1. ADMINISTRATIVE - LEGAL INFORMATION

The information in this module depends on the legislation in each country.

1.1 Table of contents (modules 1 to 5)

1.2 Application form

1.2.1 Proprietary, commercial or trade name of vaccine
1.2.2 Non-proprietary name or common name of vaccine
1.2.3 Concentration
1.2.4 Dosage Form
1.2.5 Senior Executive Officer / Senior Medical or Scientific Officer
1.2.6 Legal Representative in Country
1.2.7 Vaccine proprietary
1.2.8 Manufacturer of active ingredient(s)
1.2.9 Manufacturer of the finished product
1.2.10 Other manufacturers involved in the production process
1.2.11 Official responsible for releasing batches of finished product
1.2.12 Commercial presentation of vaccine
1.2.13 Route of administration
1.2.14 Storage conditions
1.2.15 Strength of each unit of dose
1.2.16 Legal documents on the product:
 • Document recognizing the technical director or technical professional responsible for the product
 • Authorization of representative
 • Certificate of Pharmaceutical Product (CPP)
 • Certificate of Good Manufacturing Practices (GMP)
 • Trademark certificate (optional)
 • Patent certificate (under national legislation)
 • Batch release certificate issued by NRA (imported products)
 • Manufacturer’s statement that all relevant information has been included and is accurate

1.3 Summary of product characteristics and product labeling

1.3.1 Summary of product characteristics
1.3.2 Product Labeling
 1.3.2.1 Primary package label
 1.3.2.2 Secondary packaged label
 1.3.2.3 Package insert
 1.3.2.4 Final packaging
 1.3.2.5 Monograph for health professionals or information for prescription in extended or reduced form
1.3.3 Samples
 1.3.3.1 Samples of finished product (in accordance with legislation of each country)
 1.3.3.2 Summary protocol of batch production and control

1.4 List of countries where the product has been licensed and summary of approval conditions

1.5 Information regarding experts

1.6 Environmental risk assessment

MODULE 2. SUMMARIES

2.1 General table of contents

2.2 Introduction

2.3 Overall quality summary
 Introduction
 2.3.S Summary of active ingredient
 2.3.P Summary of final product

2.4 Overview of non-clinical studies

2.5 Overview of clinical studies
 Introduction
 Table of contents
 2.5.1 Detailed discussion of product development
 2.5.2 Overview of immunogenicity
 2.5.4 Overview of efficacy
 2.5.5 Overview of safety
 2.5.6 Conclusions on risk-benefit balance
 2.5.7 Literature References

2.6 Non-clinical summary
 2.6.1 Introduction
 2.6.2 Written pharmacological summary
 2.6.3 Tabulated pharmacological summary
 2.6.4 Written pharmacokinetic summary (when appropriate)
 2.6.5 Tabulated pharmacokinetic summary (when appropriate)
 2.6.6 Written toxicological summary
 2.6.7 Tabulated toxicological summary

2.7 Clinical summary
 Introduction
 Table of contents
 2.7.2 Summary of the clinical immunogenicity studies
 2.7.3 Summary of the clinical efficacy studies
 2.7.4 Summary of the clinical safety studies
 2.7.5 Literature References
MODULE 3. QUALITY INFORMATION (CHEMICAL, PHARMACEUTICAL AND BIOLOGICAL)

3.1 Table of contents of Module 3

3.2 Contents

3.2.S Active ingredient(s)

3.2.S.1 General information, starting materials and raw materials

3.2.S.1.1 Trade and/or non-proprietary name(s) of active(s) ingredient(s)

3.2.S.1.2 Structural formula, molecular formula and relative molecular weight (if applicable)

3.2.S.1.3 Description and characterization of active ingredient

3.2.S.1.4 General description of the starting materials

 • Strain
 • Master / Working Seed System Banks
 • Embryonated eggs

3.2.S.1.5 General description of the raw materials

3.2.S.1.6 Analytical certificates signed by the manufacturer and the applicant for licensing

3.2.S.2 Manufacturing process for the active ingredient

3.2.S.2.1 Manufacturer(s)

3.2.S.2.2 Description of manufacturing process

 • Flow chart of manufacturing process
 • Description of batch identification system
 • Description of inactivation or detoxification process
 • Description of purification process
 • Description of conjugation process
 • Stabilization of active ingredient
 • Reprocessing
 • Filling procedure for the active ingredient, in-process controls

3.2.S.2.3 Material controls

3.2.S.2.4 Identification of critical steps in process and controls. Selection and justification of critical steps

3.2.S.2.5 Validation of manufacturing process. Description of changes

3.2.S.3 Characterization of active ingredient

3.2.S.4 Quality control of active ingredient

3.2.S.4.1 Specifications

3.2.S.4.2 Description of analytical procedures, validation and justification of specifications

3.2.S.4.3 Validation de analytical procedures

3.2.S.4.4 Batch analysis and consistency results

3.2.S.4.5 Justification of specifications

3.2.S.5 Reference standards or materials

3.2.S.6 Packaging/container closure system
3.2.S.7 Stability of active ingredient
 3.2.S.7.1 Protocol of stability study, summary and conclusions
 3.2.S.7.2 Post-approval stability program
 3.2.S.7.3 Stability data
 3.2.S.7.4 Storage and shipping conditions of active ingredient

3.2.S.8 Consistency of production of active ingredient

3.2.P Finished product
 3.2.P.1 Description and composition of finished product
 3.2.P.2 Pharmaceutical development
 3.2.P.2.1 Active ingredient
 3.2.P.2.2 Finished product
 3.2.P.2.3 Manufacturing process
 3.2.P.2.4 Packaging/container closure system, compatibility
 3.2.P.2.7 Justification of final qualitative/quantitative formula
 3.2.P.3 Manufacture of finished product
 3.2.P.3.1 Manufacturer
 3.2.P.3.2 Batch formula
 3.2.P.3.3 Description of manufacturing process
 3.2.P.3.4 Control of critical and intermediate steps
 3.2.P.3.5 Validation and/or evaluation process
 3.2.P.3.6 Description of batch identification system
 3.2.P.4 Control of adjuvant, preservative, stabilizers and excipients
 3.2.P.4.1 Specifications
 3.2.P.4.2 Analytical procedures
 3.2.P.4.3 Validation of analytical procedures
 3.2.P.4.4 Justification of specifications
 3.2.P.4.5 Substances of human or animal origin
 3.2.P.4.6 Use of new adjuvant, preservatives, stabilizers and excipients
 3.2.P.5 Control of finished product
 3.2.P.5.1 Specifications
 3.2.P.5.2 Analytical procedures
 3.2.P.5.3 Validation of analytical procedures
 3.2.P.5.4 Batch analysis and consistency results
 3.2.P.5.5 Determination and characterization of impurities
 3.2.P.5.6 Justification of specifications
 3.2.P.5.7 Analytical certificates signed by manufacturer and applicant for licensing
 3.2.P.6 Reference standards or materials
3.2.P.7 Packaging/container closure system
- Specifications of primary and secondary packaging
- Test and evaluation of packaging materials

3.2.P.8 Stability
3.2.P.8.1 Protocol of stability study, summary and conclusions:
- For freeze-dried products, include stability study of freeze-dried material, diluents and reconstituted product
- Thermostability (where applicable)
3.2.P.8.2 Post-approval stability program
3.2.P.8.3 Stability data
3.2.P.8.4 Description of procedures to guarantee cold chain

3.2.A Appendix. Some authorities require that the following information be included in the appendix of Module 3:
3.2.A.1 Equipment and facilities
3.2.A.2 Safety evaluation of adventitious agents

3.3 Literature References

MODULE 4. NON CLINICAL INFORMATION

4.1 Table of contents of Module 4
4.2 Report on studies
4.2.1 Pharmacology
4.2.1.1 Pharmacodinamic studies (immunogenicity of the vaccine)
4.2.1.2 Pharmacodinamic studies of adjuvant (if applicable)
4.2.2 Farmacokinetics
4.2.2.1 Pharmacokinetics studies
4.2.3 Toxicology
4.2.3.1 General toxicology - information on:
- Design of study and justification of animal model
- Animal species used, age and size of groups
- Dose, route of administration and control groups
- Parameters monitored
- Local tolerance
4.2.3.2 Special toxicology (for vaccines to which it applies):
- Special immunological investigations
- Toxicity studies in special populations
- Genotoxicity and carcinogenicity studies
- Reproductive toxicity studies
4.2.3.3 Toxicity of new substances used in formulation (new adjuvant, stabilizers, and additives)

4.2.4 Special considerations

4.2.4.1 For attenuated vaccines an evaluation of possibility of microorganism shedding through natural avenues of excretion

4.3 Literature References

MODULE 5. CLINICAL INFORMATION

The information should be consistent with the WHO Guidelines on Clinical Evaluation of Vaccines: Regulatory Expectations (WHO Technical Report Series, 924, 2005, or latest edition) and regulatory guidelines in each country.

5.1 Table of contents for Module

5.2 Contents: Reports of clinical studies

- Phase I studies
- Phase II studies
- Phase III studies
- Special considerations
- Adjuvant
- Non-inferiority studies (for combined vaccines, or approved vaccines prepared by new manufacturers)
- Combined vaccines or vaccines made by new manufacturers

5.3 Clinical study reports

5.3.6 Phase IV studies and/or Pharmacovigilance Plan (if applicable)

5.4 Literature References
CHAPTER 2:
GUIDELINES FOR PREPARATION OF APPLICATION
INTRODUCTION

This document is intended to provide additional guidance to industry for the preparation of submissions according to the document Harmonized Requirements for Licensing Vaccines in the Americas included in Chapter 1 of this document, and also to offer complementary information.

Each country has its own application form for licensing based on its own legislation. The minimum information to be presented by the applicant has been harmonized by the Working Group on Vaccines of the Pan American Network for Drug Regulatory Harmonization (PANDRH) and presented in the document harmonized requirements for the licensing of vaccines in the Americas. Because of their special characteristics, vaccines should always be considered as new products for licensing purposes.

In some countries, information on the manufacturer is considered to be part of the licensing file and in others not, depending on the organizational structure of the NRA.

MODULE 1. ADMINISTRATIVE - LEGAL INFORMATION

The information requested in this module depends on each country’s legislation. The requirements include:

1.1 Table of contents (modules 1 to 5). The application to license vaccines should include an index of the information contained in each module.

1.2 Application form. Each country has a specific form based on its legislation, the minimum information to be provided in that form is:

 1.2.1 Proprietary, commercial or trade name of vaccine. It corresponds to the name under which the vaccine will be registered.

 1.2.2 Non-proprietary name or common name of vaccine. The name adopted by the World Health Organization, the common international name, or the name contained in official pharmacopeias recognized in the country.

 1.2.3 Concentration. State the concentration of the active ingredient(s) contained in the vaccine.

 1.2.4 Dosage Form. Indicate the dosage form of the vaccine, for example, injectable solution, and lyophilized power for injectable suspension.

 1.2.5 Senior Executive Officer / Senior Medical or Scientific Officer. The professional responsible for the product in the country where licensing is applied for. Give the full name, address, telephone, fax, e-mail, professional license number, and the registration number of his/her degree, as per the country’s legislation.

 1.2.6 Legal Representative in Country. Refers to the company that represents the product, which will be responsible for marketing it in the country. Give the full name, address, telephone, fax, and e-mail. Some countries in the Region do not require legal representatives resident in the country to obtain the licensing of a product.

 1.2.7 Vaccine proprietary. Give the full name of the market authorization holder of the vaccine if licensed in the country of origin, also address, telephone, fax, and e-mail.

 1.2.8 Manufacturer of active ingredient(s). Give the name, address, telephone, fax, and e-mail of the manufacturer(s) involved in the production of the active ingredient(s) in the vaccine.

 1.2.9 Manufacturer of the finished product. Give the name, address, telephone, fax, and e-mail of the manufacturer(s) involved in the production of the finished product.

 1.2.10 Other manufacturer(s) involved in the production process of the vaccines. In the event that some parts of the manufacturing process are performed by a different company, give name, address, telephone, fax, and e-mail. For lyophilized vaccines, include the name, address, telephone, fax, and e-mail of the producer of the diluents.

 1.2.11 Official responsible for batch release of finished product. Give the name and position of the person responsible for the release of the lots of vaccine.
1.2.12 Commercial presentation of vaccine. Indicate whether the vaccine is offered for sale in single or multiple doses presentation and whether it will be distributed in a single package or in a multi unit package and whether it contains any additional accessories, for example a transfer device.

1.2.13 Route of administration. Indicate the route of administration of the vaccine.

1.2.14 Storage conditions. Indicate the storage temperature for the vaccine and any other storage conditions, for example: protect from light, do not freeze.

1.2.15 Strength of each unit of dose.

1.2.16 Legal documents on the product. The legal information should be duly certified, authenticated under the procedure in effect in the country of origin, and issued by the appropriate entity. The certified documents may be presented during the license process and they will not constitute a limitation for the dossier submission.

- Document recognizing the technical director or technical professional responsible for the product. Required based on country’s legislation. Submit a document issued by the manufacturer of the vaccine giving information regarding the individuals responsible for the product in the country indicating who is authorized to perform the related regulatory activities, including application for the vaccine licensing.
- Authorization of representative. Document issued by the manufacturer of the vaccine authorizing the company to represent it and market the vaccine in the country.
- Certificate of Pharmaceutical Product (CPP). Using WHO model. Required for imported vaccines since it is the certificate issued by the regulatory authority that grants the license in the country of origin. This certificate includes information on compliance with GMP. Some countries issue a Free Sales Certificate (FSC); this should be submitted in addition to the GMP certificate.
- Certificate of Good Manufacturing Practices of all manufacturer(s) involved in the vaccine production process. This should include manufacturers that are involved in any stage of the production process, for example manufacturer(s) of the active ingredient(s), the diluents, and those responsible for labeling and packaging the finished product. It is important that the certificate indicates the procedures that the establishment is authorized to perform.
- Trademark certificate (optional)
- Patent certificate (under national legislation)
- Batch release certificate issued by NRA (imported product). Refers to the lot release certificate issued by the regulatory authority of the country of origin of the product or the regional regulatory authority responsible for its release. The certificate should correspond to those samples submitted with the application for licensing, as applicable.
- Manufacturer’s statement that all relevant information has been included and is accurate. A document should be presented certifying that the information provided is the information corresponding to all the studies performed, regardless of their results. These include all the pertinent information regarding all toxicological and/or clinical tests or trials of the vaccine that are incomplete or have been abandoned and/or completed tests related to indications not covered by the application.

1.3 Summary of product characteristics and product labeling

1.3.1 Summary of product characteristics. A summary should be submitted of the characteristics of the vaccine under evaluation.

1.3.2 Product labeling. The text proposed for the primary label, the secondary label or exterior packaging, and the package insert should be included.

1.3.2.1 Primary package label. Submit the label proposed for the vaccine’s primary package or container, which should provide the following information as a minimum:

- Proprietary, commercial or trade name
- Non-proprietary name or common name
• Dosage form
• Concentration, potency, or viral titer
• Content/volume
• Volume/dose
• Number of doses per vial (for multidose presentations)
• Route of administration
• Storage temperature (if the size of the package so permits)
• Warnings
• Lot number
• Expiry date
• Manufacturer
• Registration number

1.3.2.2 Secondary packaged label. Include the text proposed for the vaccine’s secondary packaging, also known as the packaging that protects the primary vaccine container, which should provide the following information as a minimum:
• Proprietary, commercial or trade name
• Non-proprietary name or common name
• Dosage form
• Concentration, potency, or viral titer
• Content/Volume
• Volume/dose
• Number of doses per vial (for multidose presentations)
• Composition
• Excipients
• Product storage
• Route of administration
• Instructions for preparation
• Mode of use
• Warnings
• Identification marks (some countries require that an identification mark indicating the type of product be included, for example a yellow band for pediatric products)
• Lot number
• Date of expiry
• Name and address of the manufacturer of the finished product
• Name and address of the company responsible for packaging
• Name and address of the owner, representative, or distributor
• Name of the professional in charge
• Registration number
1.3.2.3 Package insert. Include the text proposed for the package insert, which should contain the following information as a minimum:

- Proprietary, commercial or trade name
- Non-proprietary or common name
- Pharmaceutical form
- Concentration, potency, or viral titer
- Content/Volume
- Volume/dose
- Number of doses per vial (for multidose presentations)
- Composition
- Excipients
- Cell substrate
- Route of administration
- Indications
- Immunization plan
- Proper use
- Precautions
- Warnings
- Adverse events allegedly associated with vaccination and immunization
- Contraindications
- Use during pregnancy and breast feeding
- Storage of the product/storage conditions
- Name and address of the manufacturer of the finished product
- Name and address of the company responsible for packaging

1.3.2.4 Final packaging. Samples, or alternatively labels and cartons, of the primary and secondary packaging of the vaccine, including the package insert and accessories should be submitted. The purpose of this is to provide an example of the vaccine, including accessories, if any, to verify that they correspond to what is described for the characteristics of the vaccine under evaluation.

1.3.2.5 Monograph for health professionals or information for prescription in extended or reduced form. Submit the proposed monograph on the vaccine to be distributed to health professionals.

1.3.3 Samples

1.3.3.1 Samples of finished product (in accordance with legislation of each country). Samples must be sent for the corresponding analytical evaluation.

1.3.3.2 Summary protocol of batch production and control. This protocol should follow the format recommended by the WHO in the specific requirements for the production and control of the specific vaccine submitted for market authorization. These protocols are published in the WHO's Technical Report Series. For novel vaccines for which there are no specific WHO recommendations, submit a template of the protocol proposed for its evaluation or a protocol that has been approved by the regulatory authority of the country of origin.
1.4 **List of countries where the product has been licensed and summary of approval conditions.** The list of countries where the vaccine is registered at the time the application for registration is submitted or, if there are none, the countries where registration is being processed. In the event the product has been registered in other countries, attach the summary of the conditions under which the market authorization was granted by that regulatory authority.

1.5 **Information regarding experts.** A declaration should be sent signed by each of the experts who performed the product evaluation from the standpoint of quality, nonclinical studies and clinical studies. Attach a summary of their academic records and employment experience and state the professional relationship between the experts and the applicant of market authorization.

1.6 **Environmental risk assessment.** Include an evaluation of the possible Environmental risks posed by the use and/or disposal of the vaccine and give proposals in that regard and the indications or warnings to be included on the product label.

MODULE 2. SUMMARIES

The purpose of this module is to summarize the quality (chemical, pharmaceutical, and biological); nonclinical and clinical information presented in modules 3, 4, and 5 in the market authorization application. The experts who draft these summaries should take an objective approach to the decisive points related to the quality of the vaccine, clinical and nonclinical studies performed, report all pertinent data for the evaluation, and refer to the corresponding tables included in modules 3, 4, and 5. The information in module 2 should be presented in the following order:

2.1 **General table of contents.** A general index should be included of the scientific information contained in modules 2 to 5.

2.2 **Introduction.** A summary of the type of vaccine, composition, immunological mechanism, and indications proposed for the vaccine.

2.3 **Overall quality summary.** A general summary of the quality of the vaccine should be presented, related to the chemical, pharmaceutical, and biological aspects. This summary should refer exclusively to the information, data, and justifications included in module 3 or in other modules of the registration document. The format to be followed is:

 Introduction
 2.3.S Summary of active ingredient
 2.3.P Summary of final product

2.4 **Overview of non-clinical studies.** A comprehensive and critical assessment of the results of the evaluation of the vaccine in animals and in vitro testing should be presented and the safety characteristics of the vaccine for use in humans should be defined. The data should be presented as a written and tabulated summary, in the following order:

 - Introduction
 - Written pharmacological summary
 - Tabulated pharmacological summary
 - Written pharmacokinetic summary (when appropriate)
 - Tabulated pharmacokinetic summary (when appropriate)
 - Written toxicological summary
 - Tabulated toxicological summary

2.5 **Overview of clinical studies.** Should present a critical analysis of the clinical results included in the clinical summary and in module 5. Include a summary of the clinical development of the vaccine, the design of the pivotal studies, and the decisions related to the clinical studies and their performance, and also an overview of the clinical conclusions and an evaluation of the risks/benefit in relation to the results of the clinical studies and justification of proposed doses should be included. All the data related to efficacy and safety assessed
through the development of the vaccine will be presented, as well as any outstanding problems. The data should be presented in a written and tabulated summary in the following order:

 Introduction
 Table of contents

2.5.1 Detailed discussion of product development
2.5.2 Overview of immunogenicity
2.5.4 Overview of efficacy
2.5.5 Overview of safety
2.5.6 Conclusions on risk-benefit balance
2.5.7 Literature References

2.6 Non-clinical summary. A summary of the results of the pharmacological, pharmacokinetic, and toxicological tests on animals and/or "in vitro" should be included. An objective written and tabulated summary should be presented in the following order:

 2.6.1 Introduction
 2.6.2 Written pharmacological summary
 2.6.3 Tabulated pharmacological summary
 2.6.4 Written pharmacokinetic summary (when appropriate)
 2.6.5 Tabulated pharmacokinetic summary (when appropriate)
 2.6.6 Written toxicological summary
 2.6.7 Tabulated toxicological summary

2.7 Clinical summary. A critical summary of the results submitted in module 5. This summary should include of all the clinical studies performed. It should also present a synopsis of each study. The summary of clinical information should be in the following order:

 Introduction
 Table of contents

2.7.2 Summary of the clinical immunogenicity studies
2.7.3 Summary of the clinical efficacy studies
2.7.4 Summary of the clinical safety studies
2.7.5 Literature References
3.1 **Table of contents of Module 3.** In accordance with the general plan described in the document on Harmonized Requirements for the Licensing of Vaccines in the Americas.

3.2 **Contents.** Corresponds to the basic principles and requirements of the active ingredient(s) and finished product. Includes the chemical, pharmaceutical, and biological data on development, the manufacturing process, certificates of analysis, characterization and properties, quality control, specifications and stability of each of the active ingredients and finished product, as indicated below.

3.2.5 **Active ingredient(s).** The information requested under this point should be supplied individually for each antigen in the vaccine.

3.2.5.1 **General information, starting materials and raw materials**

3.2.5.1.1 Trade and/or non-proprietary name(s) of active(s) ingredient(s). Based on the WHO or Pharmacopoeia requirements, as appropriate.

3.2.5.1.2 Structural formula, molecular formula and relative molecular weight (if applicable). For example, in synthetic vaccines containing polysaccharides or proteins include the schematic amino acid sequence, indicating the glycosylation sites or other modifications and relative molecular mass.

3.2.5.1.3 Description and characterization of active ingredient. Including physicochemical properties and biological activity.

3.2.5.1.4 General description of the starting materials. For each biological starting material used to obtain or extract the active ingredient, include a summary of viral safety of the material:

- **Strain:** Information on the origin, number of passes, identification, analysis certificates, processes of attenuation, development or construction and genetic stability, depending on the type of vaccine strain.

- **Master / Working / Seed Banks Systems.** Origin, identification, characterization, preparation method, analysis certificates, determination of foreign agents, stability, controls, and frequency of the tests, definition of the number of passes. In the case of cell banks, demonstrate that the characteristics of the cells remain unaltered in the passes used in production and successively.

- **Embryonated eggs.** Information on their origin, identification, quality certificates.

3.2.5.1.5 General description of the raw materials. Considering the raw materials used in the preparation process from which the active ingredient is not directly derived, such as culture media, bovine fetal serum, etc. Submit information on manufacturer(s), quality certificates, controls performed. In the case of raw materials of animal origin, describe the origin and criteria for selection, shipping, and conservation, and submit a certificate on reduction of the risk of transmission of agents related to animal spongiform encephalopathy.

3.2.5.1.6 Analytical certificates signed by the manufacturer and the applicant for licensing.

3.2.5.2 **Manufacturing process for active ingredient.**

3.2.5.2.1 Manufacturer(s). Give the name, address, and responsibilities of the manufacturer(s).

3.2.5.2.2 Description of manufacturing process. Submit a description of the manufacturing process that includes all the stages. A typical production process for a vaccine starts with a vial(s) from the respective seed and / or cell bank, including cell cultures, harvest(s), purification, modification reactions (when applicable), filling, storage, and transfer conditions. Where applicable, include the number of passes.

- **Flow chart of manufacturing process.** Showing all the manufacturing steps, including intermediate processes.

- **Description of batch identification system.** Identification of the lot in each stage of the process, including when mixtures are made. Also submit information on the manufacturing scale and lot size.
• Description of inactivation or detoxification process. Methods and agents used, parameters controlled, and production stage in which it is performed, when applicable.

• Description of purification process. Method, reagents, and materials used, operating parameters controlled, and specifications. Conditions for the use and re-use of membranes and chromatography columns and the respective validation studies.

• Description of conjugation process. Indicate when applicable and/or when a modification of active ingredient is done. Also include information on the origin and quality control of the starting material used to obtain the substance used as protein carrier.

• Stabilization of active ingredient. Description of the steps performed to stabilize the active ingredient, for example, the addition of stabilizers or other procedures, when applicable.

• Reprocessing. Description of the procedures established for reprocessing the active ingredient or any intermediate product; criteria and justification.

• Filling procedure for the active ingredient, in-process controls. Description of the procedure for packaging the active ingredient, process controls, acceptance criteria, type of container closure system, type of seal on the container used to store the active ingredient, storage and transfer conditions, when applicable.

3.2.S.2.3 Material controls

3.2.S.2.4 Identification of critical steps in process and controls. Selection and justification of critical steps, starting from inoculation up to the production of the active ingredient, defining the operational parameters to control during the critical stages, including quality specifications should be included.

3.2.S.2.5 Validation of manufacturing process. Description of changes. Information on validation procedures and/or evaluation of the manufacturing procedures, including reprocessing, establishment of critical steps, and criteria for establishing the control limits on the critical steps.

3.2.S.3 Characterization of active ingredient. Present data to determine the structure and physicochemical, immunological, and biological characteristics of the active ingredient.

3.2.S.4 Quality control of active ingredient

3.2.S.4.1 Specifications

3.2.S.4.2 Analytical procedures

3.2.S.4.3 Validation of analytical procedures

3.2.S.4.4 Batch analysis and consistency results

3.2.S.4.5 Justification of specifications

3.2.S.5 Reference standards or materials. Detailed description of the reference standards or materials used and analysis certificates.

3.2.S.6 Packaging/container closure system. Full description of the packaging and container closure system in which the active ingredient will be stored until used for preparing the finished product. The information should include identification of all the materials that constitute the packaging container closure system and their specifications. When applicable, discuss the types of materials selected with respect to protection of the active ingredient against humidity and light.

3.2.S.7 Stability of active ingredient

3.2.S.7.1 Protocol of stability study, summary and conclusions. Should include the study conditions, including all the storage conditions (temperature, humidity, light) in which the vaccine is evaluated, analytical method, specifications, summary of results, and conclusions.
3.2.S.7.2 Post-approval stability program. It refers to the continuation of the stability study, including the number of lots to be included in the study each year and the tests to be performed.

3.2.S.7.3 Stability data. Should include complete data from each batch evaluated during stability studies.

3.2.S.7.4 Storage and shipping conditions of active ingredient. When applicable, describe the equipment used, areas, and buildings (if pertinent) and the shipping and storage conditions.

3.2.S.8 Consistency of production of active ingredient. Summary protocol of the production and control of three consecutive lots of active ingredient, analysis certificates in the event this information is not included in the summary protocol for the finished product, an analysis of the results of these lots in terms of production consistency.

3.2.P Finished product

3.2.P.1 Description and composition of finished product. This should include a description of the finished product, its composition, listing each of the components, active ingredient(s), adjuvant, preservatives, stabilizers, and excipients, stating the function of each of them. For lyophilized products, also include a description of the diluents and the container closure system employed for the diluents.

3.2.P.2 Pharmaceutical development. Information on the studies performed to establish the dosage form, formulation, manufacturing process, and the container closure system used for final product. The studies described in this point are different from the routine quality control tests performed in accordance with the product specifications. Include the following aspects:

3.2.P.2.1 Active ingredient. Compatibility with the rest of the components in the finished product, including adjuvant, preservative, stabilizers, as applicable.

3.2.P.2.2 Finished product. Development of the formulation, considering the proposed route of administration. Physicochemical and biological properties of the product, indicating the relevant parameters for developing the finished product.

3.2.P.2.3 Manufacturing process. Description of the selection and optimization of the manufacturing process, particularly for critical aspects.

3.2.P.2.4 Packaging/container closure system, compatibility. Information on the materials selected, protection against humidity and light, compatibility of the materials.

3.2.P.2.7 Justification of final qualitative/quantitative formula.

3.2.P.3 Manufacture of finished product

3.2.P.3.1 Manufacturer. Name, address, and responsibilities of each manufacturer involved, including contract manufacturers for production and quality control.

3.2.P.3.2 Batch formula. Provide the formula of the production lot, including a list of all components.

3.2.P.3.3 Description of manufacturing process. Submit a flowchart of the process, including all the steps in the process and indicate the points, at which the material enters the process, identify the critical steps and control points in the process, intermediate products, and final product. Also include a narrative of the manufacturing process, the in process controls, and the critical points identified.

3.2.P.3.4 Control of critical and intermediate steps. Tests and acceptance criteria developed to identify the critical steps in the manufacturing process and how they were controlled.

3.2.P.3.5 Validation and/or evaluation process. Description, documentation, and results of the studies on validation and/or evaluation of the manufacturing process, including the critical steps or critical tests employed in the manufacturing process. It is also necessary to provide information on the viral safety of the product, when applicable.

3.2.P.3.6 Description of batch identification system. Define the lot in the stages of filling, lyophilization (if it applies) and packaging.
3.2.P.4 Control of adjuvant, preservative, stabilizers and excipients

3.2.P.4.1 Specifications. Provide information on the specifications for all the substances employed in the formulation of the finished product that are different from the active ingredient.

3.2.P.4.2 Analytical procedures. Description or literature of reference of the methods used to control these substances.

3.2.P.4.3 Validation of analytical procedures. Include used procedures to control substances employed in formulating the final product.

3.2.P.4.4 Justification of specifications. Include the information of all substances used in formulating the final product.

3.2.P.4.5 Substances of human or animal origin. Provide information on the source, origin, description of the quality tests performed, specifications, determination of adventitious agents, and viral safety.

3.2.P.4.6 Use of new adjuvant, preservatives, stabilizers and excipients. When used for the first time in a vaccine for human use or for a new route of administration, provide all information on the manufacture, characterization, and control, and data supporting safety established in nonclinical and clinical studies in relation to the active ingredient used.

3.2.P.5 Control of finished product

3.2.P.5.1 Specifications. Indicate the specifications for the finished product.

3.2.P.5.2 Analytical procedures. Information on the analytical procedures used for quality control of the finished product. For non Pharmacopeia methods summaries or references are not accepted. Additional information could be requested.

3.2.P.5.3 Validation of analytical procedures. Include information on the validation of the analytical procedures for the finished product including experimental data.

3.2.P.5.4 Batch analysis and consistency results. The production and control protocols for at least three lots of finished product should be submitted and an analysis of the results for those lots in terms of production consistency.

3.2.P.5.5 Determination and characterization of impurities. As applicable, depending on the method used to manufacture the vaccine submitted for licensing.

3.2.P.5.6 Justification of specifications. Provide justification of the specifications proposed for the finished product.

3.2.P.5.7 Analytical certificates signed by manufacturer and applicant for licensing.

3.2.P.6 Reference standards or materials. Provide information on the reference standards and/or materials used in the tests to control the finished product.

3.2.P.7 Packaging/container closure system. Describe in detail the type and form of container closure system of the finished product, including the materials of which they are made and quality specifications.

3.2.P.8 Stability

3.2.P.8.1 Protocol of stability study, summary and conclusions. Submit the stability study that complies with each country’s legislation, including the study protocol, specifications, analytical methods, detailed description of the container closure system for the product evaluated, storage conditions (temperature and relative humidity), summary of results for at least three lots of finished product prepared from different lots of active ingredient, conclusions, and proposed validity period. The stability studies should be signed by the professional in charge of the study. It is important to provide additional studies on the stability of the vaccine in intermediate stages in the manufacturing method that require different temperatures from the storage temperature, studies of challenge temperatures, photosensitivity or other specifications, depending on the type of vaccine, evaluated for at
least three lots. For lyophilized vaccines demonstrate the compatibility between the lyophilized product and the diluents.

3.2.P.8.2 Post-approval stability program. Include the stability program or stability commitment to be carried out once the vaccine is in the market, including the number of lots to be included in the study each year and the tests to be performed. These results should be submitted periodically to update the information on the stability of the vaccine evaluated.

3.2.P.8.3 Stability data. Should include the complete results of each lot evaluated during stability studies.

3.2.P.8.4 Description of procedures to guarantee cold chain. Describe in detail the measures used to guarantee adequate temperature and humidity conditions for shipping the finished product from the place of production to the place of final sale, including all the storage and distribution stages and indicating the controls performed in each of the stages. This description should be signed by the professional responsible for it.

3.2.A Appendix. Some authorities require the following information in the appendices to Module 3:

- **3.2.A.1** Equipment and facilities. Diagram illustrating the production flow, including materials, personnel, waste, and intermediate products in relation to the manufacturing areas; information on adjacent areas related to protection and maintenance of the integrity of the vaccine. Also submit information on all the products prepared and/or handled in the same areas as the product submitted for licensing. Describe the procedures to avoid cross-contamination of areas and equipment.

- **3.2.A.2** Safety evaluation of adventitious agents. Additional, detailed information on evaluation of the safety of the product in relation to adventitious agents of both viral and non-viral origin should be submitted.

3.3 Literature References
MODULE 4. NON CLINICAL INFORMATION

Non-clinical studies should comply with the WHO’s Guidelines on Non-clinical Evaluation of Vaccines, WHO Technical Report Series No. 927, 2005, or most recent version.

4.1 Table of contents of Module 4

4.2 Report on studies

4.2.1 Pharmacology

4.2.1.1 Pharmacodinamic studies (immunogenicity of the vaccine)

4.2.1.2 Pharmacodinamic studies of adjuvant (if applicable)

4.2.2 Pharmacokinetics

4.2.2.1 Pharmacokinetics studies. When applicable, depending on the type of vaccine or when new substances are used in the formulation of the product, new routes of administration, or pharmaceutical forms that require the respective pharmacokinetic evaluation.

4.2.3 Toxicology

4.2.3.1 General toxicology. Information should be presented on:

- Design of study and justification of animal model
- Animal species used, age and size of groups
- Dose, route of administration and size group
- Parameters monitored
- Local tolerance

4.2.3.2 Special toxicology (for vaccines to which it applies). Information should be presented on:

- Special immunological investigations
- Toxicity studies in special populations
- Genotoxicity and carcinogenicity studies, when applicable
- Reproductive toxicity studies for vaccines to be administered to pregnant women or individuals of fertile age

4.2.3.3 Toxicity of new substances used in formulation (new adjuvant, stabilizers, and additives). In the case of new substances incorporated into the formulation (new adjuvants, stabilizers, additives) other routes of administration, and new combined vaccines, submit the corresponding toxicology studies.

4.2.4 Special considerations

4.2.4.1 For attenuated vaccines evaluation of possibility of microorganism shedding through natural avenues of excretion should be submitted.

4.3 Literature References
MODULE 5. CLINICAL INFORMATION

The clinical studies should follow the WHO’s Guidelines on Clinical Evaluation of Vaccines: Regulatory Expectations. WHO Technical Report Series No. 924, 2005, or most the recent version, and each country’s regulatory guidelines.

General comments

Before beginning the clinical studies, it is necessary to have in-depth knowledge of the epidemiology of the pathogens or disease of interest in the study population. This knowledge makes it possible to statistically define the size of the sample required for the studies and to weigh the magnitude of the results for efficacy and safety.

All clinical studies should comply with the international standards for good clinical practices.

The clinical studies necessary to evaluate the clinical efficacy of a vaccine that contains one or more new antigens can involve substantial requirements with regard to the size of the population, compared to known and previously evaluated antigens. It is reasonable to require immunogenicity and safety studies only for vaccines that contain known, widely-used antigens and where correlates of protection have been well established.

5.1 Table of contents of Module 5

5.2 Contents: Reports of clinical studies

- **Phase I studies.** These are intended to define the safety and reactogenicity of the vaccine and to seek preliminary information on immunogenicity. Dose and route of administration should be evaluated with respect to these parameters. Generally these studies are conducted on small groups of immune competent healthy adults (50 to 200) who present low risk of being infected by the vaccine or related complications.

- **Phase II studies.** After the studies in phase I have been completed or sufficient information is obtained to demonstrate satisfactory results, the phase II studies can begin. The main distinction between the two phases is that the phase II studies involve a large number (200 to 600) of subjects and are usually controlled and randomized. The main objectives of these studies are to demonstrate the immunogenicity of the active component(s) and safety in the target population (mainly healthy children). The phase II studies should define the optimum dose, the vaccination schedule, and most importantly, safety, prior to beginning phase III.

- **Phase III studies.** The Phase III studies are large scale studies designed to obtain data on the efficacy and safety of the vaccine. These studies are usually carried out in large populations to evaluate the efficacy and safety to the formulation(s) of the immunologically active component(s). Several thousand subjects can be enrolled in these studies (the number will be defined by the end point of the study). Serological data are collected (for at least one immunized population subgroup) with the idea of establishing a correlation between clinical efficacy and immunogenicity, although this cannot always be established.

 The type of vaccine and other relevant factors (incidence of disease, immunological markers, and safety) will determine the duration of the follow-up on these studies and the number of participants.

 The phase III clinical studies should be performed using at least three lots manufactured on the industrial or production scale to be used routinely (in the majority of countries).

- **Special considerations.** Depending on the type of vaccine, apart from the clinical studies on immunogenicity, efficacy, and reactogenicity, it may be necessary to evaluate microorganism shedding in the case of live vaccines, interaction with other vaccines, and interference with maternal antibodies.

- **Adjuvant.** Evidence and scientific support that justifies the use of adjuvant, when applicable.

- **Combined vaccines or vaccines made by new manufacturers.** Submit information on bridging studies performed to ensure the non-inferiority of the vaccine under evaluation compared with the reference vaccine, supporting immunogenicity, reactogenicity, safety, and efficacy, when applicable.

- **Co-administration studies with other vaccines**
5.3 Clinical study reports

5.3.6 Phase IV studies and/or Pharmacovigilance Plan (if applicable). Depending on the type of application for licensing, approval in other countries, or depending on the type of vaccine, a phase IV study protocol or the results of studies that have already been performed will be required. For new vaccines, a pharmacovigilance plan should be presented.

5.4 Literature References
GLOSSARY

The definitions herein apply to the harmonized requirements for the licensing of vaccines in the Americas and its
guideline for preparation of application are included in this glossary in alphabetical order.

Active ingredient of the vaccine: the antigenic substances (or compounds thereof) that can induce specific
responses in humans against an infectious agent, its antigens or toxins.

Batch or lot: set of final packages of finished vaccine, hermetically sealed, that is homogeneous with respect to
the risk of cross-contamination during the packing and freeze-drying processes. Therefore, all final packages
must have been filled from a single set of ingredients in a single working session and, if applicable, freeze-dried
in standardized conditions in the same room.

Carrier protein: a protein used mainly in conjugated polysaccharide vaccines to which the polysaccharide
antigen is linked in order to improve both the magnitude and type of the immune response.

Country of origin: it corresponds to the country where the legal certifications of the product are emitted, where
is the legal or titular representative and can or not agree with the country where the vaccine makes.

Dosage form: the physical form in which a product is prepared for administration to the recipient.

Shelf life: it is the date before which the quality of the vaccine remains acceptable for its intended use as
outlined in the market authorization. It is established based on stability studies.

Final bulk product: any product that has gone through all stages of processing, including formulation but not
final packaging.

Finished product: final pharmaceutical form that has gone through all steps of the manufacturing process,
including final packaging.

Good Manufacturing Practices (GMP): set of procedures and practices to ensure consistent controlled
production of batches of pharmaceutical products, according to proper quality standards for the intended use
thereof and the conditions required for their sale.

Lot release: process for the evaluation of each individual lot of vaccine submitted be used in the market; this
means independent control of each lot to guarantee that all the lots produced and used in a country are in
compliance with the established quality specifications. This process can be performed by detailed review of
Summary Protocols of Production and Quality Control, and includes laboratory testing when it is considered
necessary.

License: in some countries it is called registration. Procedure whereby the National Regulatory Authority grants
permission for the product in question to be sold and distributed in the country.

Master cell bank: culture of specific cells of known origin that are distributed in a container or packages in a
single operation to ensure uniformity and stability in storage. The master bank is usually kept at a temperature of
-70°C or less. In some countries, it is called the primary bank.

Product development: all studies to show that the dose, formulation, manufacturing process and packaging
system, as well as the microbiological properties, are appropriate for the proposed purpose.

Product to be licensed: both, the document outlining the harmonized requirements for the licensing of vaccines
in the Americas and its guidelines for preparation of application, apply to the registration of vaccines in the
Americas. The vaccine may be also referred as the product.

Raw materials: any substance used to make or extract the active ingredient but from which the active ingredient
is not directly derived. For example, culture media, fetal bovine serum, etc.

Starting materials: any substance of biological origin, such as microorganisms, organs and tissues of plant or
animal origin, including cells or fluids of human or animal origin and recombinant cell substrates.

Validation: series of documented procedures or actions, consistent with good manufacturing practices,
demonstrating that the processes, equipment, materials, activities and/or systems satisfy the predetermined
specifications and quality attributes.
Working cell bank: culture of cells derived from a master cell bank and intended to prepare production cultures. The working cell bank is usually kept at a temperature of -70°C or less. In some countries, it is called the secondary bank.
ABBREVIATIONS
CID: Common International Denomination
CPP: Certificate of Pharmaceutical Product
CTD: Common Technical Document of ICH
FSC: Free Sales Certificate
GMP: Good Manufacturing Practices
ICH: International Conference on Harmonization
NRA: National Regulatory Authority, also known as national Regulatory Agency and Drug Regulatory Authority
PAHO: Pan American Health Organization
PANDRH: Pan American Network on Drug Regulatory Harmonization
VWG: Vaccines Working Group
WHO: World Health Organization
LITERATURE REFERENCES

- Guidelines on transmissible spongiform encephalopathies in relation to biological and pharmaceutical products. Geneva. WHO, 2003 (WHO/BCT/QSD/03.01)
- Requirements harmonized for the Sanitary Registration of Vaccines in the PAHO Region, 1999 (unpublished document)
ACKNOWLEDGEMENTS

COORDINATION

Olga Lidia Jacobo, Centro para el Control Estatal de la Calidad de los Medicamentos, Cuba

VACCINES WORKING GROUP

Argentina:
Instituto Nacional de Medicamentos, Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT): Marina A. Rossi, Marcela Paradela

Brazil:
Agência Nacional de Vigilância Sanitária (ANVISA): Sergio Nishioka, Flavia Cardoso de Melo

Canada:
Health Canada: Elwyn Griffiths, Maria Baca-Estrada, Aline Rinfret, Ariel Aras

Chile:
Instituto de Salud Pública (ISP): Eduardo Johnson

Cuba:
Centro para el Control Estatal de la Calidad de los Medicamentos (CECMED): Olga Lidia Jacobo

Mexico:
Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS): America Orellana Sotelo

Venezuela:
Instituto Nacional de Higiene “Rafael Rangel” (INHRR): María T. Ibarz, María G. González

Latin American Federation of Pharmaceutical Industry (FIFARMA):
GlaxoSmithKline: Marisela Poot

PUBLIC OPINION PARTICIPATION

Analía Pérez, ANMAT; Marina Rossi, ANMAT; María da Luz F. Leal, Bio-Manguinhos, Fiocruz; Olga Lidia Jacobo, CECMED; Elwyn Griffiths, Health Canada; Jeffrey Barahona, Departamento de Regulación y Programa Ampliado de Inmunizaciones, Honduras; María de los Angeles Cortés, OPS; María T. Ibarz, INHRR; M. T. Lee, Green Cross; Bertrand Borie, Sanofi Pasteur; Andrea Arancibia, Sanofi Pasteur; Ryoko Krause, International Federation of Pharmaceutical Manufacturers & Associations, IFPMA; Elaine C. Esber, Merck, IFPMA; Maricela Poot, GlaxoSmithKline, FIFARMA.

SECRETARIAT

Pan American Health Organization: María de los Angeles Cortés, José Peña Ruz

COLLABORATORS ON ENGLISH AND FRENCH TRANSLATIONS

Pan American Health Organization

REVIEW

Pan American Health Organization: James Fitzgerald, María de los Angeles Cortés, María Luz Pombo, Debora Weiss, Analía Porrás

EDITION

Pan American Health Organization: María Luz Pombo, Oristela Canto, Cecilia Parker, Bola Oyeleye